Potential applications

GNSS transmitters
- Satellites, land-based beacons
- Ground test bench, GNSS simulator

GNSS receiver
- Ground and on-board, all vehicles
- Receiver manufacturers for space, civil aviation, consumer applications, etc.

Invention overview

A method and device for transmitting and receiving a radio navigation signal having a spreading waveform composed of a real linear combination of two binary waveforms (BOC) with different frequencies.

A clever phasing of these components enables bringing the constant-envelope signal to transmission. Two receiving architectures are possible:
- composite signal search
- signal broken down into BOC components, then recombined.

Technological benefits

Use of innovative signals
Performance optimisation solution for new navigation signals within the constraints of pre-existing signals
Transmitting and receiving device for “M-BOC” implementation in GALILEO, which capitalises on the increased performance of these innovative signals

Optimised performance
Reduced measuring noise and multi-path impacts
Possibility of using only the low frequency component of CBOC

Reception with the signal being broken down into elementary BOC optimises the use of computing resources

Commercial benefits

A modern and adaptable system
Process already in place on GALILEO satellites
Ability to have two receiver ranges:
- basic receiver using only the low-frequency component
- high-end receiver using the entire signal

TRL : 9

Invention patented by CNES