

DIURNAL STAR TRACKER

Innovative system for high-frequency measurement of the attitude of a stratospheric vehicle

Technological advantages

Accurate measurement

Attitude measurement with an accuracy of the order of an arcsec

Measurement frequency: 30 Hz, extendable to 200 Hz

A robust system

Operates up to 2°/sec or more during transit Baffle for pointing to within 18° of the sun

Flexible operation

A single system for both diurnal and nocturnal phases Autonomous operation Initialises in a few seconds

Summary of the invention

Hybrid gyro-star tracker system with optical fibre gyrometer and a large sensor with a lens with a wide field of view

The size of the FOV, 10° x 15° for 16 Mpx, covers enough observable stars (up to magnitude 5.5) for orienting any vehicle above an altitude of 20 km

Potential applications

Possibility of using the system in a closed loop for locking on to the attitude (precise pointing loop.

Pointed gondola (pointing, attitude control)

Satellites (pointing, attitude control)

Drones: stability, precise location of images (sub-metric) without use of landmarks or ground control points

Military use (missile guidance, etc.)

Patented invention available under licence

Assembly with baffle

Commercial advantages

Payload optimisation

Continued lightening of aircraft: only one device for daytime and night-time

Autonomous operation

Processing done on board; fast initialisation

Flexibility

Autonomous device which can be carried on various aircraft and space vehicles: observation balloons, drones, satellites, aircraft, etc.