

Guidage en altitude pour manœuvres avec évitements

Avantages technologiques

Performance

Trajectoire optimisée pour un ralliement en temps minimum

Heuristique de recherche de la solution pour optimiser le temps de calcul

Autonomie

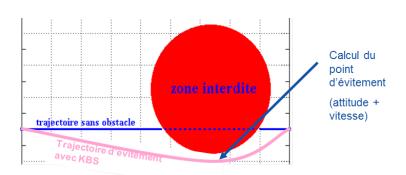
Prise en compte automatique de directions à éviter lors de l'élaboration de manœuvres d'attitude

Prise en compte des modèles Lune et Soleil par défaut, de l'occultation par la Terre

Robustesse

Très grande robustesse observée pour la méthode Principe simple et indépendant du calcul de manœuvre

Synthèse de l'invention


Méthode permettant de déterminer le guidage en attitude pour un changement de pointage respectant des contraintes de directions à éviter (éblouissements instrument, masquages, risques de détérioration...).

La solution s'appuie sur un calcul externe de manœuvres en attitude.

Applications potentielles

Spatial: observation de la terre, environnement, science (toute mission avec des capteurs nécessitant d'éviter des directions particulières)

Hors Spatial : Sécurité, Industrie navale, Drones d'acquisition

Bénéfices commerciaux

Réduction des coûts d'ingénierie

Gestion automatique des évitements, simplification des chaînes de programmation, robustesse Facilité d'implémentation à bord

Extensions possibles à tout autre système avec calcul de changements de pointage (caméra de surveillance, caméra ou faisceau laser sur robot ou machine-outil ...)

TRL : 4 Invention brevetée disponible sous licence